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Abstract A scaling analysis of the conservation equations for momentum, heat and species transport 
inside the solidifying mushy zone of a binary alloy is performed to examine systematically common 
assumptions and predict general behavior of the mixture during freezing. Several terms in the momentum 
equation are found to be negligible throughout the solidifying domain, and the use of D'Arcy's law to 
approximate the momentum equations in the mushy zone is found to be valid except in the region near the 
liquidus isotherm. A criterion is developed to define this region, and the dependence of the streamfunction 
and buoyancy driven velocity on material properties and fraction solid is determined. The energy equation 
is examined to provide scaling laws for the mushy zone and solid region thicknesses, as well as the transient 
chill wall temperature. Advection is shown to dominate solute transport throughout the mush, although, 
in the denser regions of the solid-liquid region, liquid velocities are so small as to have a negligible effect 
on macrosegregation. Numerical calculations performed for Pb-Sn and AI-Mg alloys at different cooling 

rates confirm trends suggested by the scaling analysis. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Through its influence on phenomena such as solute 
redistribution and remelting, liquid flow during sol- 
idification of an off-eutectic alloy can significantly 
affect the thermal, electrical and mechanical proper- 
ties of the completed ingot. In recent years, related 
issues have been studied extensively, and com- 
prehensive reviews have been published [1-4]. 

A common approach to predicting the behavior 
of a solidifying alloy uses a continuum formulation, 
which allows the entire domain to be modeled by 
one set of equations, thereby eliminating the need to 
explicitly track solidification fronts or to use artificial 
matching conditions at these fronts. In one approach, 
classical mixture theory is used to derive advection- 
diffusion equations which describe the transport of 
mixture mass, momentum, energy and species in terms 
of phase properties and phase mass fractions, thereby 
eliminating the need for detailed descriptions of phase 
interactions [5-8]. 

While continuum mixture models have enjoyed a 
measure of success in at least qualitatively predicting 
the behavior of solidifying ingots, the results are gen- 
erally cast in terms of dimensional variables and are 
specific to the systems studied. The complex transport 
phenomena involved in a solidifying alloy usually 
require a full numerical solution to extract useful 
information from the equations. However, scaling 
principles [9, 10] can be applied to these equations to 
obtain useful results concerning the functional depen- 
dence of important macroscopic parameters on cast- 
ing conditions and material properties. Scaling analy- 

sis can also be used to simplify systematically the 
governing equations by assessing the relative sig- 
nificance of the terms. 

There have been few applications of these tech- 
niques to the full equations associated with sol- 
idification in a mushy layer. One recent application 
was concerned with developing a stability analysis and 
determining a critical Rayleigh number for the onset 
of convective flow [11]. However, a multidomain, 
rather than a continuum, formulation was used, with 
a prescribed interaction between the melt and mushy 
regions. It was also assumed, a priori, that D'Arcy's 
law with buoyancy applied to fluid flow everywhere 
in the two-phase region. 

The only studies which apply scaling analysis to 
complete continuum mixture equations appear to be 
those by Amberg [12, 13], who considered an iron- 
carbon mixture solidified by imposing a constant and 
uniform heat flux at the side walls. The governing 
transport equations for a binary alloy were non- 
dimensionalized, and order-of-magnitude estimates of 
various terms were used to derive a parameter map. 
In each parameter range, estimates were made of sol- 
idification time, degree of segregation, and mode of 
freezing. Also, the amount of undercooling in the bulk 
melt was determined and calculations were performed 
with the full equations to confirm the estimates. 

The present work examines a bottom cooled binary 
alloy, modeled using the full continuum mixture 
model derived by Bennon and Incropera [6] and reas- 
sessed by Prescott et al. [8]. The transport equations 
are scaled in the mushy zone to provide order-of- 
magnitude estimates for streamfunctions and vel- 
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NOMENCLATURE 

c specific heat [J kg ' K '] 
D, liquid mass diffusion coefficient [m 2 

s ~] 
Da D'Arcy  number, KJ~2/6 
f mass fraction 
F dimensionless composit ion 
g volume fraction; gravitational 

acceleration [m s 2] 
h enthalpy [J] 
h,- heat of  fusion [J kg ,] 
k thermal conductivity [W m ' K ~] 
K permeabili ty [m 2] 
L ingot height [m] 
Nu ingot Nusselt number, UL/k 
P pressure [N m 2] 
p, ,  p ,  pressure gradients in x- and v- 

directions [N m -3] 
q" heat flux [W m 2] 
Ra~6 mushy zone Rayleigh number, pg(fl~A 

,[~,o -- flTA To) K6 / (#~) 
ReK mushy zone Reynolds number, 

plV0Kt,Z/p 
t time [s] 
T temperature [K] 
u x-velocity [ms  ~] 
U overall heat transfer coefficient ( W 

m 2K ') 
z' ),-velocity [m s '] 
V velocity vector [m s '] 
W ingot width [m] 
x, 3, Cartesian coordinates [m]. 

Greek symbols 
thermal diffusivity [m2/s i] 

fl contract ion ratio 
fls solutal expansion coefficient 
fir thermal expansion coefficient 

[K ~'1 
6 mushy zone thickness [m] 
6~ solid region thickness [m] 
0 dimensionless temperature 
~,, permeabili ty constant  [m 2] 
It dynamic viscosity [kg s ~ m ~] 
p density [kg m 3] 
r dimensionless time 
O streamfunction [m 2 S-']. 

Subscripts 
c chill 
i initial 
I liquid 
liq liquidus 
M momentum 
mp melting point for pure component  
0 reference value 
s solid 
sol solidus 
T thermal 
w bot tom wall. 

Superscripts 
constituent of  binary mixture 

* dimensionless variable. 

ocities due to buoyancy effects, for mushy and solid 
layer thicknesses, and for chill wall temperature, and 
to show that  certain terms in the momentum equations 
are negligible everywhere in the domain.  Portions of 
the two-phase region in which convection has a sig- 
nificant effect on the t ransport  of energy and species 
are also identified. Numerical calculations for A I - M g  
and Pb-Sn  systems, chilled from below over a range 
of thermal boundary conditions, are used to assess the 
results of  the scaling analysis. 

2. MATHEMATICAL FORMULATION AND 
NUMERICAL METHODS 

Using the continuum mixture model for sol- 
idification of binary allows [6, 8], dimensional equa- 
tions for the transport  of  mixture mass, momentum, 
enthalpy and species may be expressed as 

@ (? () 
a-~ + ~x (pu) + ~ (p,O = o (I) 

? 
~i (pu) + v . (pVu) = V . ~ p Vu 
" Pl 

(;,) +v .# .v  

)~ (pv) + V. (pVv) = V. ~ p, w, + V. ~vV 

II P V + p lg( f lT(  T - -  T,) -}-fls(f~ --.)¢'l~i)) 
K~ P, 

#P V.pJ~Vv 
~?)' f ,  

(ph)+V.(pVh) = V- Vh 

+ V. (~ V(h,-  h ) ) -  V- (pV(h,-h)) 

(2) 

(3) 

(4) 
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(pf~) + v .  (pvf  ~) = v .  (pAo,vf ~) 

+ V" ( p f D t V ( f ' ( - f = ) )  - V"  (pV(f~ - f=) ) .  (5) 

The solid phase is assumed to be rigid and station- 
ary, thereby eliminating several terms in the momen- 
tum equations of Prescott et al. [8]. Because recent 
experimental studies suggest that there is very little 
transport of free-floating solid particles in bottom 
cooled ingots [14], the assumption is believed to be 
valid for the conditions of this study. Another change 
in the momentum equations concerns relaxation of 
the assumption of equivalent solid and liquid densit- 
ies. The second term on the right-hand side of equa- 
tions (2) and (3) arises due to the difference in densities 
of the two phases. Although the last term on the right- 
hand side of equations (2) and (3) has been neglected 
previously [6, 8], it is retained temporarily in this 
study. 

The permeability components, Kx and Ky, depend 
on the model linking microscopic drag effects to 
macroscopic flow. While the permeability of mushy 
zones is generally anisotropic, specific features are not 
well understood, and it is assumed that Kx = Ky = K. 
The permeability is evaluated from the Blake-Kozeny 
expression, 

(1 -#s )  3 
K = x 0 - - ,  (6) 

g~ 

where the permeability constants, x0, are based on 
representative dendritic arm spacings (DAS). 

To assess results of the following scaling analysis, 
numerical studies were performed for a rectangular, 
bottom cooled ingot, with W = 500 mm and L = 200 
mm (Fig. 1). In this mold, two different alloys, Al- 
l 4.9 wt % M g and Pb-19.2 wt % Sn, were each chilled at 
two heat extraction rates until complete solidification 
was reached. Selection of the AI-Mg system was based 
on to its commercial significance, while Pb-Sn was 
chosen for its wide freezing range, which promotes 
macrosegregation. The dendritic arm spacing for A1- 
Mg was estimated to be 500 #m (x0 = 1.4 x 10 -9 m2), 
as suggested by photographs of dendrites [15] and, 
for Pb-Sn, the spacing was approximated as 71#m 
(K0=2 .8x10  l l m  2)[16]. 

Initially, the alloys were assumed to be molten, 
quiescent and uniformly mixed, with temperatures 
exceeding the liquidus temperatures corresponding to 
the initial compositions by 5°C (T~ = 287°C for Pb-  
Sn, Ti = 575°C for A1-Mg). All walls were imper- 
meable, with a no-slip condition. The top and side 
walls were insulated, while energy was extracted from 
the bottom at a rate governed by the instantaneous 
wall temperature, Tw(t), and a uniform and constant 
overall heat transfer coefficient, U 

q"(t)  = U[T~(t)  - T~]. (7) 

Values chosen for U in the lead-tin system were 
1000 W m -  2K- l and 10 000 W m -  z K - ~, while values 

V" w Vl 

1 6 

y,v 

q'=U[Tvv-T o] 
Fig. 1. System geometry. 

L 

for aluminum-magnesium were U = 1000 W m -2 
K -~ and 2500 W m -2 K -1. Selection of these values 
was dictated by the desire to maintain a liquid region 
above the mushy zone during much of the sol- 
idification process. If U is too small, a slow rate of 
solidification could cause the mush to fill the entire 
domain with small spatial variations of solid volume 
fraction and liquid composition. On the other hand, 
if U is too large, rapid solidification could preclude 
establishment of buoyancy induced flow, leaving little 
time for the weak diffusive or advective transport of 
solute. However, for extremely large solidification 
rates, solute may be transported by shrinkage driven 
flows, the effects of which are discussed elsewhere 
[17]. Hence, the overall heat transfer coefficients were 
selected to produce intermediate freezing range con- 
ditions. 

The numerical scheme used to solve the con- 
servation equations is SIMPLER, a control-volume- 
based finite difference method, with a fully implicit 
time marching technique [18]. The program uses a 
TDMA line-by-line solver with a block correction 
method, solving first for the pressure and velocity 
fields and then for the mixture enthalpy and compo- 
sition. Using these mixture quantities, the lever law is 
applied to the linearized equilibrium phase diagrams, 
either for Pb--Sn or A1-Mg, to determine the local 
temperature, the fraction solid, and the composition 
of the solid and liquid phases. The expressions mode- 
ling the binary phase diagram are well documented 
[6, 19] and are not repeated here. The grid (85 x 50) 
provides a compromise between computational accu- 
racy and speed and is comparable to that used in 
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previous simulations of lead-t in systems [17, 20]. The 
largest time steps which yielded quickly converged 
results varied with cooling rate, ranging from 1.0 to 
0.01 s for slow and rapid cooling, respectively. These 
time steps were used at the beginning of solidification 
and increased as time progressed and the cooling rates 
decreased. Solutions were considered converged at a 
particular time step if they had residuals of mass, 
energy and species less than 10 4 for at least five 
consecutive iterations. The calculations were per- 
formed on HP-715 workstations and used approxi- 
mately 250 CPU s per time step. 

3. SCALING ANALYSIS 

appropriate scale is the time required for liquid to be 
advected across the distance Y0, or to,M ~ 3/Vo, where 
v0 is an appropriate vertical velocity scale. 

Recasting the continuity equation (1) in terms of 
scaled quantities, 

e(p*/~+ l) +/u,,]a(p*/~+ 1)u* a(p*/~+ l>* = 0. 
~t* \Vo / 8x* + ~y* 

(l l)  

Because the contraction ratio, /3, is in the range 
from 2 to 12% for metal systems, the last two terms 
on the left-hand side of equation (1 1) are the same 
order of magnitude, 

3. I. Continuity and momentum equations 
The first step in scaling equations (1)-(3) is the a 

priori selection of reference values for as many vari- 
ables as possible. These reference values should be 
chosen to give nondimensional  variables of order 
unity. Because this study is primarily concerned with 
transport phenomena in the mushy zone, an obvious 
length scale for the vertical direction is the thickness 
of that zone, y~ = 60'* = Y/Y0). Emms and Fowler [9] 
show that, for bottom chilled solidification, the width 
of circulation ceils transporting fluid between the 
mush and the melt is of the same order as the mushy 
zone thickness. Therefore, the horizontal length scale 
is equated to this thickness also, x0 = ,5 (x* = x/x0). 
Although this choice may be inappropriate if 6 >> W. 
the mushy zone thickness does not exceed the order 
of the ingot width for the conditions of this study. 

Initially, the density of each phase is assumed to be 
constant and uniform, with p~ # p~. A dimensionless 
density which varies between zero and unity across 
the mush is defined as 

p ,  P--Pl  P--Pl  (8) 
P~ -- P, flPl ' 

where ~ is the contraction ration, fl = ( (P~-P3/PO.  
Similarly, a dimensionless temperature and liquid 
composition can be expressed as 

T -  TI,. T -  7]iq 
0 1~ol-- T,q - AT0 (9) 

and 

. ! 7 - fL  .f¢-.lL F, - - (lO) 
.lLo, -.IL al~0 

The temperatures T,q and T~o~ correspond to the 
liquidus and solidus temperatures at the initial com- 
position, J'~.~. The maximum liquid composition,.f~.,,o,, 
exists when the last liquid freezes at T = 7~,,,~. 

As a time scale, Emms and Flower [1 1] and Amberg 
[13] chose t0,M = L2/o:, which is a measure of the time 
required for heat to diffuse the distance L. However, 
while convenient for purposes of nondi- 
mensionalization, this choice is not a physically appro- 
priate reference for the momentum equations. A more 

/u0~ 8u* &* (12) 

in which case, uo ~ vo. 
Using the foregoing reference values, the vertical 

momentum equation (3) may be nondimensionalized 
with the D'Arcy drag term assumed to be important  
throughout the mushy zone. Rearranging the dimen- 
sionless equation to yield a coefficient of unity for the 
D'Arcy term, it follows that 

[-&'* &* &* .L V'v* ] 
5 + v *  r, lid 

fi ( 2 @ *  8v* 8p* 8t~* 
= Oa2 V*ev* + p * ~ l  k c?Tx*x* ?,x ~ + 2 8):* By* 

\ , (p*~-7 ])vo / ay* 

/ p,gflT A To K \ ( p,g~sA.l~,oK "~ 
(13) 

where ReK = plvoKI;21/l *, Da 2 = K/6z and Py0 is a ref- 
erence for the vertical pressure gradient. 

Before estimating values of the coefficients in equa- 
tions (13), the second, third and fourth terms within 
the bracketed quantity on the right-hand side, which 
represent viscous stresses arising from density vari- 
ations, are examined. Because fl << 1, f l / (p*f l+ 1) << 1, 
and these three terms are negligible everywhere com- 
pared to the remaining viscous term, V*2v *. Hence, 
the terms can be neglected. Moreover, because the 
remaining term is of order Da'-, its influence inside the 
mushy zone is limited to regions near the liquidus 
interface. Considering a mushy zone thickness of 
,5 = 10 mm as an example, Da 2 << 1 for g~ ~> 0.005 in 
the Pb-Sn system and for g~ >~ 0.02 in the AI-Mg 
system. Because the calculations described in Section 
2 show that 6 = 10 mm is relatively small for all but 
the highest freezing rates, it is reasonable to neglect 
all viscous terms inside tile mushy zone. 

The left-hand side of equation (13) is of order 
ReKDa. With the numerical calculations yielding vel- 
ocities near the liquidus line of approximately 10 -3 m 
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s -t for Pb-Sn and 10 -2 m s ~ for AI-Mg, and 
assuming a mushy layer thickness of 6 = 10 mm, all 
terms on the left-hand side are negligible for Y= ~> 0.01 
and 9s >~ 0.1 in the Pb-Sn and AI-Mg systems, respec- 
tively. For  this reason, penetration of advective effects 
into the mush often is neglected in multidomain mod- 
els [e.g. 11, 21], and flow in the two-phase region is 
determined only from D'Arcy's  law and continuity. 
However, because channel initiation and growth 
appear to be strongly affected by the transport of 
solute near the liquidus interface [22, 23], the advective 
effects should be retained in studies of channel and 
freckle development. 

While the left-hand side of equation (13) is sig- 
nificant only in the regions of the mushy zone near 
the liquidus isotherm, the first three terms remain 
important throughout the adjoining bulk liquid 
region. The last term is identically zero in the bulk 
liquid, and, because it is of order ReKDa(fUf ) in the 
mush, where ( f s / f )~  0 near the liquidus, it is neg- 
ligible in this region also. Hence, as done in prior 
studies [6, 8], the term can be neglected everywhere 
throughout the mushy and liquid regions. The fore- 
going order-of-magnitude analysis yields a reduced 
continuum momentum equation which has the dimen- 
sional form 

t3 /2 
(pv) + V .  (pVv) = V . ~ V v -  K v b5 

OP 
+ ~ = (14) + p g ( f l v ( T -  7",.) fls(f~ - f u ) ) -  ~y.  

Neglecting terms which are estimated to be small in 
most of the mushy zone, and again using p*fl << 1, 
equation (13) reduces in that region to 

* f e y o K ~ p *  (Pg~T A To K~_ 0 
0 -t. o . , o  / 

+(PgflsAfi~'°-l~Fl.. (15) 
k ~v0 / 

Assuming that the mixture composition does not 
vary significantly from the original composition, the 
temperature and liquid composition are linked 
through the phase diagram. Approximating the liqui- 
dus line on the eutectic phase diagram as linear, the 
definitions for dimensionless temperature and liquid 
composition give 0 -- --Fl and equation (15) can be 
written as 

feyog~63P * (Pg(flsAf~,o-flTATo)K~F ' 
o_-  + - 7 ; o  7 ' 

(16) 

A similar relation can be found for the x momentum 
equation (2). 

( P~o_I~ O P * 
0 z - u * -  \ ~ o  ]ax* " (17) 

Assuming that Pxo ~ Pyo, differentiating equations 
(16) and (17) with respect to x and y, respectively, 
and subtracting one from the other, it follows that, 

Or* ~u* .~ (pg(flsAf{o-flTAT0)K~ 0F~ 
ax* Oy* \ #V0 / 1  C3x*" 

(18) 

Rewriting equation (18) in terms of a stream- 
function, ~, where u = a~lOy and v = -dqUOx, and 
using ~0 -~ v0 6 to scale ~O, it follows that 

_V2~p, (pg(flsAf~,o-flvATo)Kf'~OF~ (19) 

where $* = $/¢o- This result leads to the following 
scaling laws for the streamfunction, 

pg(flsAf~.o -- fit A To)l(,6 
~b0/0~ ~ = (Ra)K~, (20) 

and the velocity, 

pg(flsAf~,o - f lvAT0)K 
Vo (21) 

P 

Equation (21), which gives the reference velocity 
as a function of K and, therefore, g=, is suitable for 
estimating velocity variations in the mushy zone. Also, 
as will be shown below, it is useful for determining 
regions in which advection can significantly affect 
energy and species transfer. 

3.2. Energy equation 
Although the dimensional energy equation (4) has 

been written in the form of an advection-diffusion 
equation which is convenient for numerical calcu- 
lations, an alternative formulation is better suited for 
the scaling analysis. In particular, equation (4) may 
be expressed as 

Ot \ c ]  

Scaling the solid, liquid and mixture enthalpies such 
that the nondimensional quantities vary from zero at 
the solidus to unity at the liquidus, it follows that 

and 

h=-cTsot h,-cT=ol 
h~*- - -  , (23) 

C(Tliq -- Tso~) cATo 

h * -  hi - (c Tsoi + hf) 
cATo ' (24) 

h - C rso I 
h* - - -  (25) 

Ah ' 

where Ah --- cA To + hr. Accordingly, substituting from 
equations (8) and (25), nondimensionalization of the 
transient term yields 
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~(ph) p~ 1- . . . . .  3(p'h*) ?~p* Oh*7 
c~t - ~ o , T L ( l ~ 3 l ~ ) ~  + ([3cT~°')~tg + A h ~ J  

(26) 

or, with fl << 1. 

P(ph) plAh ~?h* 
(27) 

¢'~t t<v ~'~t* 

Substituting from equations (23)-(25) and (27), the 
scaled form of the energy equation (22) is 

Oh* (C'kO to,vkATo][,t?~*~,,, ,* ,.,q~t'*q 
?t*' Ah6 ][ u ?x* +~ ay*] 

\ pah6-~T;>, (28) 

where the prescription of adiabatic side walls is pre- 
sumed to render diffusion in the x-direction negligible. 

The results of numerical calculations indicate that 
the temperature field in bottom chilled ingots depends 
on y and x near the liquidus and in the melt. Because 
of the time dependent nature of this problem, the 
transient term is always significant and is balanced 
by a combination of advective and diffusive effects. 
Estimates of the ratio of the advective and diffusive 
coefficients in equation (28), assuming that the 
unknown proportionality constant in equation (21) is 
approximately unity, indicate that the ratio is larger 
than order unity for g~ ~< 0.15 and g~ ~< 0.25 in the 
Pb-Sn and AI Mg systems, respectively, dem- 
onstrating that advective effects do indeed dominate 
near the liquidus line. In the remainder of the mushy 
zone, however, the advective term is, at most, of order 
unity. 

In order to obtain order-of-magnitude estimates for 
the mushy zone and solid region thicknesses and the 
chill wall temperature, the freezing of the alloy is div- 
ided into two temporal regimes : (i) Tw > T~o~, in which 
the mushy zone is in contact with the chill wall and 
no region of the domain is completely solid, and (ii) 
T~ ~< T~o~, in which totally solid region exists between 
the chill wall and the mush (see Fig. 1). Considering 
the first regime and neglecting advection throughout 
the mushy zone, the energy equation can be approxi- 
mated by 

1 ~T phf~/~ ~?2T 
- ( 2 9 )  

c~ ?t k ~t i)y 2' 

which is subject to the conditions, 

P'Y[,=o = U(Tw(t)-- T~.) (30) 

and 

T(t = 0) ~ Tliq. (31) 

This last condition holds if the superheat is small 
compared to the temperature across the mushy zone. 

Using the chain rule, equation (29) can be rewritten 
a s  

where [ 19] 

( !  PhfOJs O~= 02T (32) 
k aTJOt ax 2' 

l ( T -  Tliq ) 
,/~(T) = 1 - k p \ T -  Trap//" (33) 

Equation (32) can be scaled, yielding 

\cAToJ\  l -kpJ\(O-Omp)2 j J 

1 (Tl i  q - -  T ~ )  (Tliq -- Tw) 
>< (34) 

9~ t 6 2 

where 0 =(T-Tc)/(Tl~q-T~o,). Because the second 
term in the transient coefficient is generally order unity 
for the metal systems examined here, it follows that 

6 '  ~ ~,/2 (35) 

where 6 " =  6/L and z = to~/L 2. This relation holds 
even after the solid region forms at the chill surface. 

Replacing (Tliq-Tw) by (T~iq-T, o0, the foregoing 
analysis may be repeated for the conditions following 
formation of a solid region. With energy transfer in 
the solid occurring exclusively by conduction, the 
thickness of the solid layer may be scaled as 

6"~  ~ ,  (36) 

where 3" = 3jL,  z~ = ( t -  tsoO c~/L 2 and t~o~ is the time 
at which T~ = T~ol. 

To understand the transient behavior of the chill 
wall temperature, equation (30) is scaled as 

k TX - T,, ~ U( Tw - TeL (37) 
3x 

where conditions associated with the subscript Z 
depend on the temporal regime. While the mushy zone 
is in contact with the chill wall, T~ = Tliq and fix = 6. 
After the completely solid region begins to form, 
T~= T,o~ and 6x=6~. Rearranging and non- 
dimensionalizing equation (37) it follows that, for 
Nu = UL/k, 

O~ O~,q 
1 + Nu6* 

for the first regime and 

0sol 
0,~ 

1 + Nu6* 

after the solid region 

(38) 

(39) 

forms. Equating these two 
relations at the time the completely solid region begins 
to form (~o0, when 6~ = 0, the following scaling law 
is obtained : 
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%o, LNu\O,o, 1)] 2. (40) 

3.3. Species equation 
Reducing equation (5) to a form which is better 

suited for scaling and substituting from equation (10), 
the scaled solute transport equation may be expressed as 
c~F /'to ~vo \F aFl ~Fj 3 

\ 6 2 jay,  =. (41) 

Using this equation, the transport mechanism 
which dominates changes in mixture composition can 
be determined. From equation (41), the ratio of 
coefficients associated with transport due to advection 
and diffusion is 6 Vo/(p*fl+ 1 ) f  DI. Calculations of 
this quantity for the conditions of this study show that 
advection dominates species transport for the entire 
mushy zone. The diffusion coefficient is small, 
D, ~ 10 -9 ,  and although liquid velocities are very 
small deep within the mushy zone, advection remains 
the dominant transport mode. 

3.4. Summary of scaling analysis 
Scaling of the conservation equations has provided 

new insights concerning transport of momentum, 
energy and species in a mushy zone. The resulting 
velocity and streamfunction scales show the depen- 
dence on fluid properties, buoyancy, and the local 
permeability of the mushy zone. From the energy 
equation, scaling laws for the thicknesses of the two- 
phase and solid regions and for the chill wall tem- 
perature have been obtained. Estimates of the extent 
of penetration of significant advective effects into the 
mushy zone for the momentum and energy equations 
have shown that such effects are dominant only near 
the liquidus. However, scaling of the species equation 
indicates that solute transport is driven by liquid 
motion throughout the entire mushy zone. 

4, ASSESSMENT OF SCALING ANALYSIS 

Calculations were performed to assess the results of 
the scaling analysis, with two cooling rates considered 
for each of the two alloys. Streamfunctions, velocities, 
mushy and solid region thicknesses, and chill wall 
temperatures were computed from detailed numerical 
simulations and the trends were compared to the sca- 
ling relations found in the previous section. 

The first scaling relationship that is tested quan- 
titatively is that for the streamfunction, equation (20). 
A plot of a typical streamfunction pattern (A1-Mg, 
U = 1000 W m -2 K -t ,  t = 80 s) is shown in Fig. 
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Fig. 2. Representative streamfunction pattern in mushy zone 
(AI-Mg, U = 1000 W m 2 K-l ,  t = 80 s). 

2. This pattern is representative of conditions after 
significant flows are established in the mushy zone and 
before the top of the computational domain begins to 
affect the flow patterns. In Fig. 2, the streamlines 
indicate the presence of two regions of upflow (chan- 
nels, or freckles) along the side walls, with an area of 
downflow in the center. 

The maximum value of #J/c( at each discrete y 
location in the computational domain is plotted 
against corresponding values of RaKa in Fig. 3 for 
some representative times for each of the four casting 
conditions. For  the AI-Mg ingot, results are shown at 
t = 100 and 300 s for the low cooling rates and t = 100 
s for the higher rate. For  the Pb-Sn system, results 
correspond to t = 500 for both cases. The results show 
that the mushy zone Rayleigh number correctly rep- 
resents the dependence of maximum streamfunction 
on material properties, solid volume fraction and 
mushy zone thickness. The dependence breaks down 
near the liquidus (large RaKe), where advective effects 
become important, and near the solidus (RaK~ ~ 0), 
where the solid region stops all flow. Flow into a 
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Fig. 3. Calculated maximum streamfunction values as a function of corresponding mushy zone Rayleigh number. 

channel is dominated by fluid which enters from 
regions near the liquidus line, with inflow from 
locations deeper in the mush making almost no con- 
tribution to the total mass flow through the channel. 
(The difference between the values of ~ defining any 
two streamlines is the volume flow rate between those 
two streamlines [24] and, hence, corresponds to the 
amount of liquid entrained into the channels from the 
mushy zone.) This result leads to the conclusion that 
the composition of the plumes ejected into the bulk 
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O 
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Fig. 4. Dimensionless mushy zone thicknesses as a function 
of dimensionless time. 

melt from the channels should be closer to the initial 
value than to the liquid composition near the solidus 
front. This conclusion agrees with the experimental 
observations of Hellawell e t  al .  [25], who measured 
the composition of plumes in NH4CI-H20 systems 
during freezing and of channels in solidified Pb-Sb 
alloys and deduced that most of the flow entrained 
into the channels from the mushy zone is from the 
near-liquidus region. 

In Fig. 4, numerical results for the dimensionless 
mushy zone thickness are plotted as a function of r ~:2 
to assess the validity of the scaling relation given by 
equation (35). The predictions agree well with the r ~/2 

dependence suggested by the approximate analysis, 
until later stages of solidification when the liquidus 
isotherm approaches the top of the numerical domain. 
By this time, the lighter component (tin or mag- 
nesium) rejected from the mushy zone accumulates in 
the top of the cavity. This solute rich region has a 
lower liquidus temperature than the initial com- 
position (assumed in the scaling analysis), which 
retards the growth of the mushy zone. The numerical 
results in Fig. 5, which illustrate the dependence of 
the solid region thickness on time, equation (36), do 
not exhibit significant changes in slope at larger values 
of z, because the upper boundary of this region is 
always at T~o,, which, for the conditions of this study, 
does not change significantly. The curves have differ- 
ent intercepts to the 6* = 0 line because the four cases 
begin forming a totally solid region at different times. 
The foregoing trends are consistent with measure- 
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Fig. 5. Dimensionless solid region thicknesses as a function 
of dimensionless time. 

ments of the mushy and solid region thicknesses made 
for a side-cooled A1-Cu alloy at two different com- 
positions [26], where both fi and 6s were found to 
depend on t L'2 

The numerical simulations were used to obtain the 
maximum velocity and the corresponding local solid 
volume fraction at each discrete y location in the 
mushy zone and at selected times until the mushy zone 
approached the top of the computational domain. The 
velocities are plotted for the A1-Mg (Fig. 6) and Pb-  
Sn (Fig. 7) systems as a function of solid volume 
fraction, along with a curve which is proportional to 
the reference velocity found by the scaling analysis 
in equation (21). In Fig. 6, velocities correspond to 
U =  1000 W m -2 K ' for 100 ~< t ~< 300 s and 

U = 2 5 0 0 W m  - 2 K  ~ for 80~<t~<200 s. Figure 7 
provides velocities for 75 ~< t ~< 700 s for both 
U = 1 0 0 0  W m  2 K-~ and for U = I 0 0 0 0 W m  -2 
K - I .  

The scaling analysis predicted that v0 is independent 
of cooling rate, and, for a given alloy, depends only 
on the solid volume fraction. The numerical results 
show little or no dependence on cooling rate, and, 
with one exception, consistent trends are predicted for 
the dependence on solid volume fraction. The excep- 
tion pertains to the A1-Mg system (Fig. 6) for small 
values ofgs. The velocity dependence of equation (21) 
is based on a balance between the buoyancy and drag 
forces imposed by the dendritic matrix. Estimates of 
the orders of magnitude of the terms in equation (13) 
suggest that advection and, to a lesser degree, viscous 
forces become important near the liquidus line 
(#s = 0). The estimates also suggest that penetration 
of these effects into the mushy zone is larger for the 
A1-Mg system than for Pb-Sn. For  the lead-tin alloy, 
the buoyancy-D'Arcy drag force balance is valid for 
practically the entire mush, while buoyancy driven 
flows in the A1-Mg system are restrained near the 
liquidus (#s < 0.05) by the other effects. This differ- 
ence explains the departure of the numerically pre- 
dicted velocities from the trend shown by the scaling 
relation in Fig. 6, while such a departure is not promi- 
nent in Fig. 7. 

The scaling analysis was also used to predict the 
dependence of the transient chill wall temperature on 
the casting conditions, and the results were compared 
to those obtained numerically. Figure 8 shows the wall 
temperature, 0w, taken from equation (38) for the 
period during which the mush contacts the chill wall 
(Tw > T~o0. For  the AI-Mg cases, the scaling law is 
only approximately representative at short times (high 
0w), when there is a very small mushy zone and the 
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Fig. 6. Comparisons of scaling relations with predicted maximum mushy zone velocity for the A1-Mg system. 
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Fig. 8. Comparison of chill wall temperatures obtained from numerical predictions and scaling analysis (T < r~o~). 

contribution of latent heat release is important. At 
later times, and in the low U Pb-Sn case, the pro- 
portionality predicted by the scaling analysis matches 
the numerical results very well. The high cooling rate 
case for Pb-Sn is not plotted because a solid region 
forms almost immediately. After the time at which 
solid formed at the chill surface, the scaling analysis, 
equation (39), is in excellent agreement with the 
numerical solution for the chill wall temperature (Fig. 

9). The dependence associated with the scaling law for 
the time at which solid begins to form at the chill 
surface, equation (40), is compared to and exhibits 
excellent agreement with the numerical results (Fig. 
10). 

Scaling of the species transport equation showed 
that advection dominates the redistribution of solute 
throughout most of the mushy zone. Although this 
result might imply that the mixture composition of 
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the mushy layer should change considerably over 
time, Fig. 11, which presents centerline mixture com- 
positions for the Pb--Sn and A1-Mg alloys at U = 104 
W m -2 K -~ and U = 2500 W m -2 K - l ,  respectively, 
suggests a different conclusion. Figure 11 (a) compares 
composition profiles at 250 s and at a later time (1150 
s) for which material within the two-phase region at 
250 s is completely solidified. In the intervening 900 s, 

only a region very close to the liquidus has undergone 
further redistribution of solute, while most of the 
mush remains unaffected. Figure 11 (b) shows A1-Mg 
centerline profiles at 90 and 300 s. Over this 210 s 
period, there is some change in the composition over 
the upper half of  the mushy zone and a significant 
change in the upper quarter of the zone. In denser 
regions of the mush, liquid velocities are too slow to 
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significantly influence solute redistribution by advec- 
tion before complete solidification occurs. The differ- 
ence between the two cases is reconciled by the scaling 
analysis, which predicts deeper penetration of advec- 
tive effects into the mushy zone for AI-Mg than for 
Pb-Sn. This deeper penetration is due primarily to the 
more permeable mushy zone of the A1-Mg system. 
Therefore, although the scaling analysis reveals that 
solute movement is dominated by advection, the 
numerical predictions show that the mixture com- 
position in the mushy zone is only affected near the 
liquidus. 

5. SUMMARY 

A set of continuum mixture equations for mass, 
momentum, energy and species transport has been 

nondimensionalized by introducing physically mean- 
ingful scales, and a scaling analysis has been perfor- 
med. This analysis has been evaluated quantitatively 
by comparing results with those obtained from 
detailed numerical calculations for two metal alloys 
convectively cooled from below. Treatment of the 
momentum equations, which yielded estimates for the 
streamfunction and buoyancy driven velocity in the 
mushy zone, indicated that D'Arcy's law provides a 
reasonable approximation for momentum transport 
in regions for which ReKDa << 1. Several terms in these 
equations were found to be negligible in all regions of a 
solidifying ingot and a momentum equation retaining 
only significant effects was developed. Consistent 
trends were found between velocities and stre- 
amfunctions calculated from the scaling analysis and 
the numerical simulation. 
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The energy equation yielded scaling laws for the 
mushy zone and solid region thicknesses, as well as the 
transient chili wall temperature, which are consistent 
with trends numerically calculated using the full equa- 
tions. The effect of  cooling conditions and the alloy 
phase diagram on the time required for initiation of  a 
fully solid region was also predicted accurately. 
Al though the scaling analysis indicated that species 
transport was dominated by the advection of  liquid 
throughout  the two phase region, the numerical pre- 
dictions showed that velocities were too small for 
liquid mot ion to affect macrosegregation patterns of  
the denser regions of  the mushy layer before complete 
solidification occurred. 
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